

## Estimating nectar and pollen Residues per Unit Dose (RUD) values for different pesticide application types based on a new global database

<u>Silvia Hinarejos</u><sup>1</sup>, Tim Fredricks<sup>2</sup>, Max Feken<sup>3</sup>, Timothy Joseph<sup>4</sup>, Bridget O'Neill<sup>5</sup>, Larry Brewer<sup>6</sup>, William Warren-Hicks<sup>7</sup>



### Bee Exposure in Risk Assessment

### Exposure

(what pesticide concentration is in pollen/nectar & how much is consumed)



- Crops that produce pollen and/or nectar
- The public literature is generally bee hive monitoring data (e.g., pollen, wax) with minimal to no link to a pesticide application
- Exposure assessment in bee RA :
  - Default estimates (lower tier)
  - If risk refinement is triggered, residue studies in pollen & nectar:
    - No standardized designs and regionally-specific context
    - Expensive and logistically difficult to conduct



# Pesticide residues in the nectar & pollen depend on application method and use pattern



**Foliar Spray** 



**Seed Treatment** 



**Soil Application** 



Tree trunk



## Nectar & Pollen Residue Unit Dose (RUD) – PRTF Project Background



The current North America screening level assessments in BeeREX model (EPA 2014) rely upon default RUDs from non-bee relevant matrices



EPA pollen & nectar residue database recently exists for four NNI + sulfoxaflor



EFSA used a nectar & pollen residue database to derive RUDs for the EU risk assessment



ICPPR Residues WG identified need to compile global residue data to inform test designs/protocols when conducting residue trials

OECD also interested in global residue database









## Current BeeREX default RUD values to calculate EECs in nectar & pollen

**BeeREX model v.1** 

| Table 1. Use | er inputs | (related | to exposure | ) |
|--------------|-----------|----------|-------------|---|
| Description  |           |          |             |   |

| Description                           | Value        |
|---------------------------------------|--------------|
| Application rate                      | 0.5          |
| Units of app rate                     | lb a.i./A    |
| Application method                    | foliar spray |
|                                       |              |
|                                       |              |
|                                       |              |
| Are empirical residue data available? | no           |
|                                       |              |

#### Table 2. Toxicity data

| Description              | Value (μg a.i./bee) |  |
|--------------------------|---------------------|--|
| Adult contact LD50       | 12.9                |  |
| Adult oral LD50          | 17.6                |  |
| Adult oral NOAEL (NOEDD) | 4.3                 |  |
| Larval LD50              | 1.2                 |  |
| Larval NOAEL (NOED)      | 0.7                 |  |

#### Table 3. Estimated concentrations in pollen and necta

| rable 3: Estimated concentrations in ponen and |                   |                   |
|------------------------------------------------|-------------------|-------------------|
| Application method                             | EECs (mg a.i./kg) | EECs (μg a.i./mg) |
| foliar spray                                   | 55                | 0.055             |
| soil application                               | NA                | NA                |
| seed treatment                                 | NA                | NA                |
| tree trunk                                     | NΔ                | NA                |

No distinction between pollen & nectar

### **Spray Application:**

- 110 ppm for 1 lb ai/A (98 mg/kg for 1 kg ai/ha)
- Based on upper-bound pesticide residue value for 'tall grass' from USEPA T-REX model (EPA 2012)

#### **Soil Application:**

Briggs-Ryan plant-soil uptake model based on application rate, log Kow and Koc

#### **Seed Treatment:**

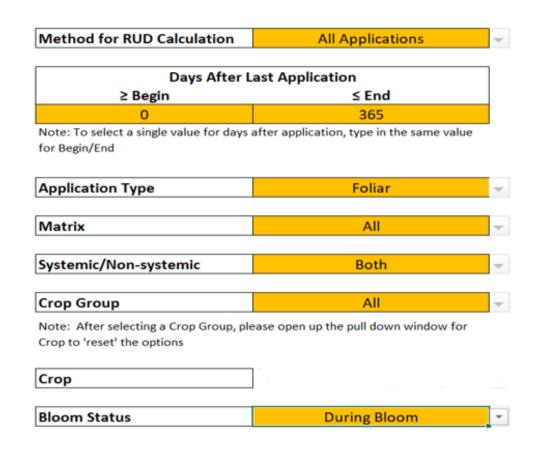
1 mg ai/kg regardless initial conc. on each seed



## Project Goal 1: Compile nectar & pollen residue data across multiple a.i. & regions (US & EU)

- Pesticide residues data in nectar & pollen following a known application rate and use pattern
- Sources:
  - US EPA database: foliar, soil and ST, systemic insecticides (177 studies)
  - EFSA database (Kyriakopoulou et al., 2017): Primarily foliar-applied insecticides, fungicides and herbicides (125 studies)
- Thorough standardization and data quality control to combine both databases
- A total of 12,773 unique bee-relevant values from 35 a.i.

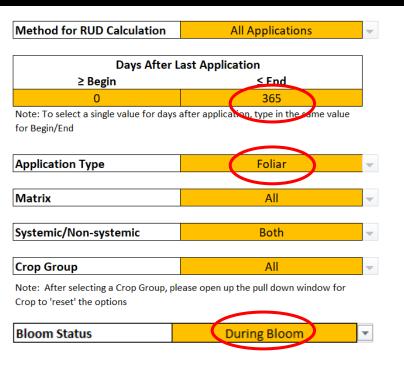


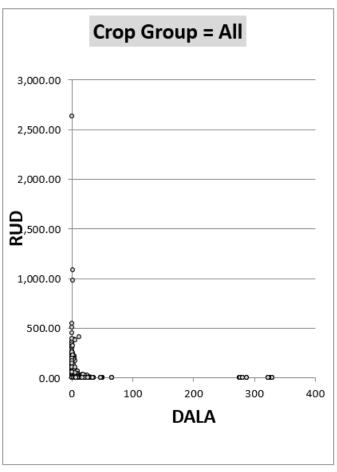


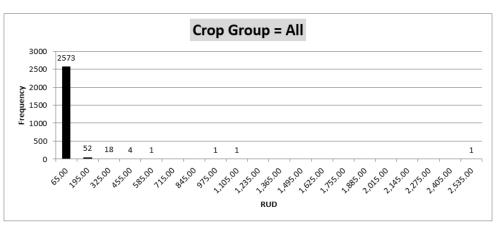




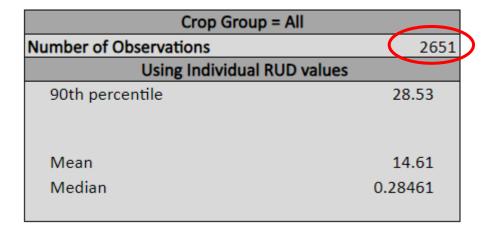

## Project Goal 2: Create a User Interactive tool to calculate Nectar & Pollen Residue Unit Doses (NPRUD)


- Method RUD Calc All appl., last application
- \*Days After Last Application (DALA): 0 to 365 days
- Application type: Seed T., Foliar, Soil, Seed+others
- Matrix: All, Nectar (all), Pollen (all), Bee Nectar, Bee Pollen, Extrafloral Nectar, Floral Nectar, Flower, Pollen Floral, Processed Nectar, Processed Pollen
- Systemicity: All, Systemic, Non-systemic
- Crop: 39 crops grouped by IR-4 index
- Bloom Status at App: All, pre-, during, post-



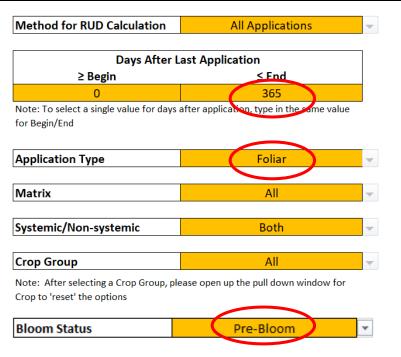

### Example NPRUD Interactive Tool – Foliar spray, bloom

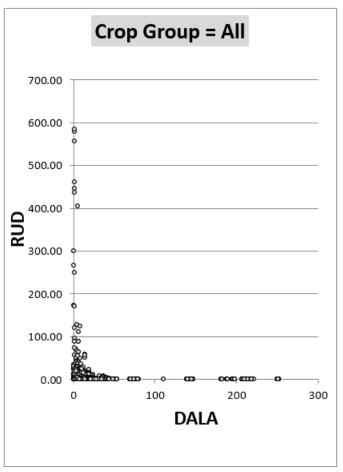

v.55

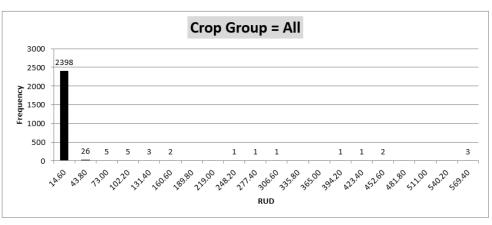




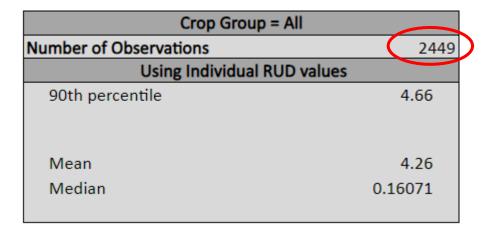



Note. data labels > 0 are shown above each column (e.g. the number of values in that column)



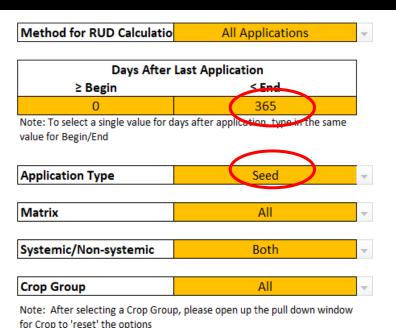

### Example NPRUD Interactive Tool – Foliar spray, pre-bloom

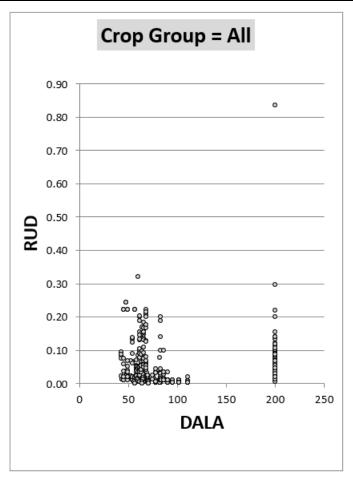

v.55

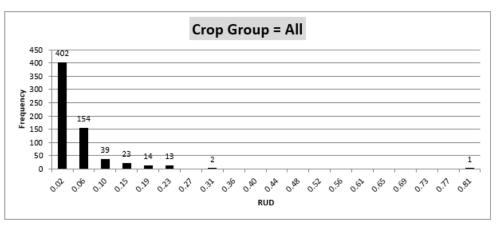




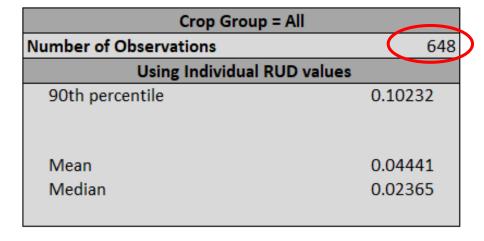



Note, data labels > 0 are shown above each column (e.g. the number of values in that column)




### Example NPRUD Interactive Tool – Seed Treatment

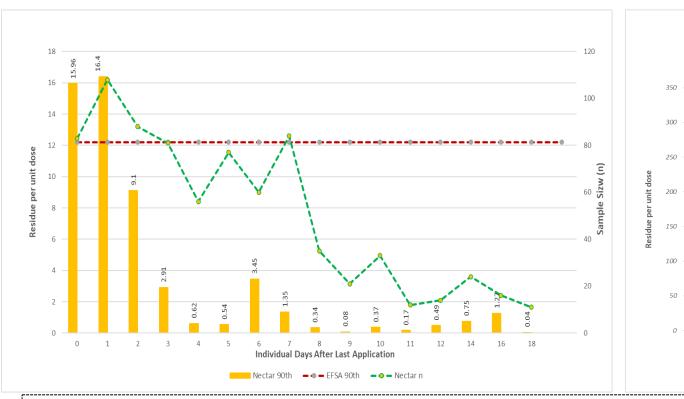

#### v.55

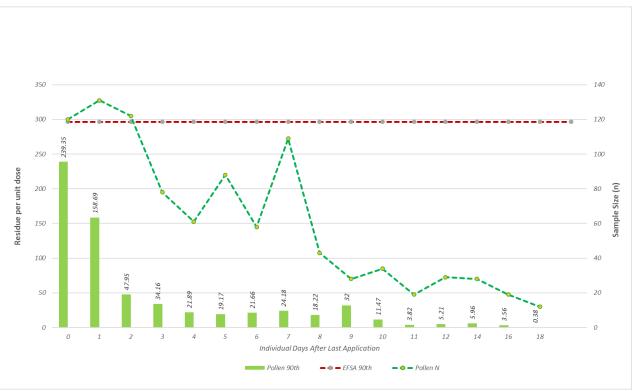






Note, data labels > 0 are shown above each column (e.g. the number of values in that column)




## Calculated Nectar & Pollen RUDs for different short DALAs

### Foliar spray







- BeeREX default nectar RUD value could be changed from 98 mg/kg to 16.4 mg/kg (or adopt the current EFSA 90th percentile nectar RUD value of 12.2 mg/kg)
- BeeREX default pollen RUD value could be increased from the current value of 98 to 239.4 mg /kg.



### Summary

- The global database and user interface can provide refined exposure estimates for pollinator Risk Assessment in North America, also in other regions
- Empirically based default RUD values for pollen & nectar, separately
- Reduce the overall uncertainty of using non-relevant matrices while maintaining sufficiently protective dietary exposure assumptions in Tier 1 bee risk assessments
- Current database can be kept populated with new data when available
- User interface and data analyses have been shared with the US EPA for review
- A manuscript to be submitted for publication in a peer-review journal



### Potential to...

- Leverage existing data in bee risk assessment

  - More uniformed and predictive screening assessments
  - Means to target areas for refined data needs (by crop, timing, app. type, matrix type, etc)
- Better evaluate potential exposure estimates for research studies
- Use data to inform Integrated Pest Management (IPM) decisions



